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Assuming the Wiedemann-Franz law, measured data for electrical conductivity u of 
liquid Cs and Rb is converted to ,Ie, the electronic contribution to the thermal 
conductivity 1. While the major part of the measured thermal conduction is thereby 
accounted for, the “residual” ionic contribution, defined as ( I - ’  - A T 1 ) - ’ ,  does not 
simply increase as the metal-insulator transition is approached along the coexistence 
curve. 

Since 1 is dominated by A,, it is surprising that a hard sphere model, which predicts 
i / q  = 5kB/2M with q the shear viscosity and M the ionic mass, still gives correctly a 
relatively constant ratio, though a difference in behaviour of J./q as a function of 
thermodynamic state is noted for liquid Rb and Cs compared with liquid argon. 

A generalization of Andrade’s formula for shear viscosity at the melting point is also 
discussed, including the work of Zwanzig relating the self-diffusion coefficient D to q via 
the bulk viscosity. 

Key Words: Self diffusion, viscosity, Wiedemann-Franz law. 

1 INTRODUCTION 

Considerable understanding of electronic transport in simple liquid 
metals now exists. The object of the present paper is to explore therefore 
whether microscopic theory of electronic conductivity u (known to 
intimately involve the liquid structure factor S(k), the bare ion pseudo- 
potential ub, and the dielectric function c(k) in the region of the triple 
point), can be utilized to make first-principles predictions of atomic 
transport in the simple sp liquid metals. 
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254 TRANSPORT IN LIQUID METALS 

To this end, we have explored therefore, first of all, the thermal 
conductivity 1 of the liquid metal. The Wiedemann-Franz law’ relates 
the electronic conductivity B to the electronic contribution, 1, say, to 
the thermal conductivity. The precise relation is 

= const = L 4 .- 

aT 

where the Lorenz number L has the theoretical value 2.44 x 

We have therefore, in Section 2 below, first utilized experimental data 
on 6, which we know can be convincingly interpreted from microscopic 
theory near the triple point, to calculate 1, for some sp metals over a 
range of thermodynamic states. For a few cases, ,Ie thus obtained can be 
brought into contact with direct measurements of the thermal conducti- 
vity A. Though as expected, 1, is the dominant contribution to A in the 
dense metallic fluids under discussion here, the “residual” contribution 
from the ions shows somewhat surprising features, though, it must be 
stressed, the deviations of & from I are quantitatively small. 

Attention is then shifted, in Section 3, to the shear viscosity y~ of 
simple liquid metals over a similar range of thermodynamic states. 
Here, the analysis of empirical relationships has been guided by the 
melting point formula: 

w 0 K - 2 .  

with T, the melting temperature, M the atomic mass, and p the atomic 
number density ( N / V )  for N atoms in volume V .  To build up confidence 
in the formula (1.2), which was obtained using Green-Kubo theory of 
transport, plus an assumption of a well defined Debye frequency in the 
frequency spectrum of a liquid metal, by Brown and March,2 Table 1.1 
is reproduced from their work. This shows, with a constant chosen 
following Andrade,3 whose kinetic theory arguments would not find 
ready acceptance’ today, that the quantitative agreement between 
theory and experiment at the melting temperature is quite remarkable. 
Therefore, we regard Eq. (1.2) as a further pillar, in addition to Eq. (1 .1 ) ,  
in building up quantitatively useful empirical relationships between 
transport coefficients. The other relation that has motivated the data 
analysis presented in Section 3 comes from an entirely different (and 
less physical for simple liquid metals with small ion cores) line of 
argument, namely a hard sphere model of transport in dense fluids. 
Here, the work, for example, of Longuet-Higgins and Pople? following 
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J. ASCOUGH, R.  G. CHAPMAN AND N. H. MARCH 255 

Table 1.1 
various metals at their melting temperatures. 

Data for the shear viscosity of 

Liquid Exptl. (poise) Theory (poise) 
a(MT,)1’2 R-*Ia 

Li 
Na 
K 
Rb 
c s  
cu 
Ag 
AU 
In 
Sn 

0.0060 
0.0069 
0.0054 
0.0067 
0.0069 
0.0410 
0.0390 
0.0540 
0.0190 
0.0210 

0.0056 
0.0062 
0.0050 
0.0062 
0.0066 
0.0420 
0.04 10 
0.0580 
0.0200 
0.02 10 

N.B. M and R are respectively atomic mass 
and volume. 

earlier studies by Collins and Raffel,s obtained by Boltzmann transport 
theory the hard-sphere relationship: 

with k, ,  as usual, denoting Boltzmann’s constant. Though Eq. (1.3) is 
not verified, of course, by experimental data on liquid metals over a 
range of thermodynamic states since A is dominated by &, yet it does 
predict correctly the approximate constancy of A / q  over a range of 
thermodynamic conditions. 

Section 4 is then concerned with the relation between the self- 
diffusion constant D and the shear viscosity q. It has, in fact, been 
known for a long time that there is indeed an intimate connection 
between D and q, which in the early literature is most frequently 
expressed by the Stokes-Einstein formula 

where a is a molecular diameter while c is a numerical constant.6 In 
their work on Green-Kubo transport theory, Brown and March2 
found for liquid metals with a well defined Debye edge that, by invoking 
Lindemann’s law of melting, the self-diffusion coefficient D at the 
melting temperature of simple metals had the form’ 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



256 J. ASCOUGH, R. G. CHAPMAN AND N. H. MARCH 

Taking the product of Eqs (1.2) and (1.5), Eq. (1.4) is regained when one 
utilizes the known constancy of the packing fraction at the melting 
point of metals, Though Eq. (1.5) was derived by Brown and March' 
from a physical argument specific to liquid metals with a sharp Debye 
edge, earlier work by Ascarelli and Paskin* using a modification of 
Enskog theory applied again to the hard sphere model led back to the 
form ( 1 . 9 ,  with a generalization they proposed away from the melting 
temperature T,: see also Section 4 below. 

Subsequently, and quite recently, Z ~ a n z i g , ~  using also Green-Kubo 
formulae and a Debye-like assumption, has proposed a relation be- 
tween D and q having the form 

( G ) p - l l 3  = 0.0658 2 + - = C, ( 5 )  
which now involves the ratio q/qr of shear to longitudinal viscosity. As 
Zwanzig points out, C, though dependent on q/q,, can only vary 
between 0.13 and 0.18. Zwanzig also showed Eq. (1.6) to be consistent 
with experimental data on the insulating liquids tetramethylsilane at  
T = 293 K and 373 K, and on benzene at T = 393 K. As was suggested 
earlier, taking the product of Eqs (1.2) and (1.5) we obtain 

Drn~rna~k'~Trn. t 1.7) 
This equation is, of course, in contrast to Eq. (1.6), specific to the 
melting point. One of us' has subsequently pointed out that Zwanzig's 
assumptions closely parallel those made by Brown and March' at  the 
melting point of liquid metals. The prediction (1.6) will therefore be 
brought into contact with liquid metal transport coefficients in Sec- 
tion 4. 

Finally, Section 5 consists of a discussion of the utility of the above 
formulae for liquid metals, their theoretical basis, as well as a brief 
summary. 

2 ELECTRONIC CONTRIBUTION TO THERMAL CONDUCTIVITY 
D ERlVED U SI N G W I ED E MAN N-FR AN2 LAW 

We have first taken a restrictive set of data for measured electrical 
conductivity 0 at atmospheric pressure." (Calculations have been 
performed by other workers which theoretically extend this data 
set-we include these results also.) It must be stated though, that even 
as the theoretical to experimental error may be of the order of 2 % for 
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TRANSPORT IN LIQUID METALS 257 

Table 2.la Data for thermal conductivity for liquid Rb. 

T / K  l.f:,':,/W m- K-' ,It::, I, MaH A,, Eq. (1.1) 

312.5 
350.0 
400.0 
450.0 
500.0 
550.0 
600.0 
650.0 
700.0 
800.0 
900.0 

1OOo.o 
1100.0 
1200.0 
1300.0 
1400.0 
1500.0 

32.7 
32.5 
31.9 
31.1 
30.2 
29.2 
28.3 
27.4 
26.4 
24.7 
22.9 
21.2 
19.5 
17.7 
16.0 
14.3 
12.7 

32.10 - 
32.11 - 
31.31 45.5 

29.66 46.8 

21.96 41.0 

- 46.6 
__ 46.0 
__ 44.3 
- 42.2 
- 39.3 

35.3 
- 31.2 
- 26.9 

23.0 

30.49 - 

28.82 - 

27.09 -~ 

~ 

~ 

- 
~ 

33.53 

32.02 

30.31 

28.61 
26.96 
25.30 
23.62 
21.87 
20.19 
18.23 
16.41 
14.64 

- 

- 

N.B. A,, Eq. (1.1) was calculated assuming L has the value given 
below Eq. (1.1). MaH denotes Mattheissen approach. 

Table 2.lb Data for thermal conductivity of liquid Cs. 

T/K Af;,';/W m - K - A;,{, I, MaH I,, Eq. (1.1) 

- 301.7 18.4 18.3 - 

350.0 18.4 18.3 - - 
400.0 18.4 18.3 25.3 20.25 

500.0 18.3 18.3 27.7 20.68 

600.0 17.9 - 29.7 20.62 
650.0 17.5 
700.0 17.1 - 30.7 20.24 
800.0 16.3 - 31.6 19.62 
900.0 15.3 - 31.2 18.83 

1ooO.O 14.3 - 30.4 17.89 
1100.0 13.1 - 28.2 16.74 
1200.0 11.9 - 25.3 15.43 
1300.0 10.2 - 22.2 13.97 
1400.0 9.4 - 18.3 12.43 
1500.0 8.1 - 14.1 10.89 

Data calculated as in Table 2.la. 

- 450.0 18.4 18.3 - 

- 550.0 18.1 18.4 - 

~- - - 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



258 J. ASCOUGH, R. G. CHAPMAN AND N. H. MARCH 

measurements up to 700 K, the errors for predictions of o at tempera- 
tures greater than 700 K are not easily determined. 

Using Eq. (1.1), we have calculated 1, at various temperatures shown 
in Tables2.la and b. These data are shown in curves 1 and 3 of 
Figure 2.1 for Rb and Cs respectively. 

If calculation of Ae from Atolal via Mattheissen's Rule is carried out, 
one obtains curves 5 and 6 of Figure 2.1. The estimate for the ionic 
contribution was made from the work of Liebfried and Schlomann.' ' 
Their relationship is simply" 1; = A$(k$h)3MsZ' i30~ / (y~ .  T).  A ,  is 
generally a function of yc  and hence the superscript refers to different 
values prescribed for the parameters A$;  M and R refer to the atomic 
mass and volume respectively. 

As might be expected, the relationship for the component contribu- 
tions to the total thermal conductivity is: 

1 

where j denotes the different mechanisms of scattering. Hence 
I .  

L O  - 
1 

. 2  
6 

2 0  - 2 

I I 1 I 

600 800 1000 1200 lLo0 TIK 

Figure2.1 Contributions to thermal conductivity A, in units of W m-I K - '  as a 
function of temperature. Curve 1. Electronic contribution 1, for liquid Rb, calculated from 
Eq. (1.1) using measured electrical conductivity u as given by Cook et a/. (Ref. 10). 
Curve 2. Curves of A,,,,, for Rb. Curve 3. Same as Curve 1 but for liquid Cs. Curve 4. 
Curves of I,,,, for Cs. Curve 5.1, for Rb as calculated via Mattheissen approach. Curve 6. 
,Ie for Cs as calculated via Mattheissen approach. 
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TRANSPORT IN LIQUID METALS 259 

the subscript i indicating ionic contribution. 
This relationship is derived from Mattheissen's Rule which essen- 

tially states that for all component scattering processes the inverse total 
relaxation time equals the sum of the component inverse relaxation 
times for those scattering processes. Hence, the total resistivity equals 
the sum of the component resistivities. 

The residual ionic contribution, as in Liebfried and Schlomann," is 
estimated by assuming that there is almost a solid-like character to the 
liquid. This is to say that there is a characteristic vibrational frequency 
even though the system is disordered. 

3 RELATION BETWEEN SHEAR VISCOSITY A N D  
THERMAL CONDUCTIVITY 

The next question we shall attempt to answer is whether the hard- 
sphere displayed in Eq. (1.3), though not as it stands 
appropriate of course, can motivate nevertheless a useful route to 
estimating v in liquid metals. The data used here can only be treated as 
relatively close estimates for the ratio 1/q when the states for Iz  and q are 
close lying. The ratio itself is only weakly dependent on the thermo- 
dynamic state. 

The data presented here for the ratio l / q  was obtained by calculating 
v using the hard-sphere model with comparison (i.e. substitution) of A 
from experiment. This data is recorded in Tables 3.1 and 3.2, again for 
liquid Rb and Cs. 

Equation (1.3) is incomplete for metallic liquids and hence it should 
not be surprising that the figures presented for 1/q are one or two orders 
of magnitude in disagreement with those of the theoretical predic- 
tion-i.e. 1.56 x 10' and 2.43 x 10' for caesium and rubidium respec- 
tively. Ae is (cf. Section 2 )  the major contributor to 1 and it must, we feel, 
raise the question as to whether a two-component (ions + conduction 
electrons) model will eventually be required for a full understanding of 
shear viscosity of simple s-p liquid metals. 

Using measured q for Cs in (& /v )~ , "  (MaH-Mattheissen) one 
obtains values having an order of magnitude of 5 in comparison with 
theory which predicts 2. Comparing the input of measured data for A 
with hard-sphere input for q to plot the curves of 1/q vs. T one observes 
in Figures 3.la and b a peak in the range 1000 K I T I 1 100 K, and 
also the curve has roughly the same shape. One might note that for both 
Rb and Cs T,,, is approximately 1020 K which might imply T,,, is a 
characteristic temperature for the two alkalis and, perhaps, for the 
group. Further work will be needed to see if this is verified. 
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260 J. ASCOUGH, R. G. CHAPMAN AND N. H. MARCH 

Table 3.1 
Rb and Cs. 

Shear viscosity uf Rb:lZ 

Measured shear viscosity q for 

TIK q/cP 

311 0.6734 
312 0.6713 
313 0.6630 
318 0.6441 
323 0.6258 
372.7 0.4844 
413.5 0.4133 
452.0 0.3634 
493.1 0.3234 

Shear viscosity for C S : ' ~  

T/K Visc/mP T/K Visc/mP 

408 3.87 
489 3.05 

593 2.48 
693 2.12 
770 1.86 
829 1.80 
798 1.86 
918 1.59 

lo08 1.53 
1088 1.41 
1063 1.54 

50s 2.87 

~ ~- 

1171 1.41 
1230 1.34 
1297 1.25 
1378 1.20 
1456 1.15 
1470 1.12 
1581 1.02 
1621 0.97 
1673 0.93 
1745 0.91 
1783 0.87 
1828 0.83 
1878 0.79 

The condition for the maximum to occur is: 

d l n q  d l n l  
d T  d T  

- 

which may give a route to evaluating T,,,. We note the following 
estimates:* 

zz (1390 K)-', __ In A 1 z (1130 K)-I  (3.2) 
dT T=10201( 

For lo00 K 5 T I 1100 K, d In q/dT FZ const but d In A/dT is not. The 
curvature of the plot of In A vs. T is variable over this range and hence 

dInL 1 dlnu  1 
*Given Eq. (].I), - = - + - 

dT T dT N y '  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSPORT IN LIQUID METALS 

Table 3.2 Ratio of thermal conductivity 1 
to shear viscosity q for heavy liquid alkalis. 

26 1 

Rubidium 

1 
v T/K p/kgm-' - x 104/kg-' JK-' 

400 
500 
600 
700 
800 
900 
loo0 
1100 
1200 
1300 
1400 
1500 

145 1.99 
141 1.40 
1370.19 
1328.31 
1285.68 
1242.20 
1197.75 
1152.15 
1105.14 
1056.41 
1005.48 
75 1.74 

1.10 
1.13 
1.15 
1.19 
1.23 
1.25 
1.27 
1.27 
1.25 
1.21 
1.17 
1.12 

Caesium 

1 
v T/K p/kg m-' - x 103/kg-' JK-' 

400 1791.28 5.38 
500 1738.36 5.93 
600 1684.70 6.54 
700 1630.23 7.16 
800 1574.84 7.76 
900 1518.40 8.14 

loo0 1460.70 8.49 
1100 1401.49 8.39 
1200 1346.41 8.18 
1300 1277.00 7.86 
1400 1210.68 7.19 
1500 1140.52 6.52 

N.B. Pressure is taken as - 10 MPa. 

the gradients may match for this temperature interval. This is in 
contrast to A / q  versus T for the insulating liquid shown in 
Figure 3.2: see also Table 3.3. 

4 STOKES-EINSTEIN RELATION AND ZWANZIG'S 
GENERALIZATION 

Bearing on the above comment about a two-component model of liquid 
metals, it should occasion no surprise that, when considering the self- 
diffusion coefficient D of the ions in a liquid metal, one should have in 
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262 J. ASCOUGH, R. G. CHAPMAN AND N. H. MARCH 

h / y  loL / kg-'JK-' 

1.30 

1.26 

1.22 

1.10 

1.u 

T /  K 

Figure 3.la Ratio of thermal conductivity A to shear viscosity q for liquid Rb, versus 
temperature T. While measured data is employed for 1, the shear viscosity does not 
appear to have been measured over an equivalent temperature range. Hence q used in 
constructing this plot has been calculated from model of Paskin and Ascarelli.' Note that 
while E./q - 1.2 x lo4 kg-' JK-', there is evidence for a maximum around T - lo00 K, 
in marked contrast to the behaviour for liquid argon shown in Figure 3.2 below. 

mind a picture of an ion "carrying around its own screening cloud," 
but, of course, diffusion occurring in interaction with the other screened 
ions via forces which are mediated by the electrons. Notwithstanding 
such a picture, the work of Brown and March2 already demonstrated a 
type of Stokes-Einstein relationship between D and q at the melting 
point of metals. 
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TRANSPORT IN LIQUID METALS 

TI  K 
Figure 3.lb Same as Figure 3.la but for liquid Cs. 

hlq x102k#X-' 

1 I I 1 

4.0 100 120 140 1 

263 

10 TIK 
Figure 3.2 Ajq  versus T for liquid argon, following Janaf tables.I4 
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264 J. ASCOUGH, R. G. CHAPMAN AND N. H. MARCH 

Table 3.3 Shear viscosity and thermal conductivity of liquid argon”. 

2 MPa 

1 
rl 

q x 10-6/Pa.s 1,” m-’ K - ’  ~ x 10z/kg-’ JK-’ TIK 

84.280 
90.000 

1 00.OOo 
1 1o.OOo 
115.OOo 
120.000 
125.000 
126.000 
128.000 
129.714 

290.0 
245.0 
187.0 
146.0 
129.0 
114.0 
999.0 
97.2 
91.9 
87.2 

0.1350 
0.1250 
0.1100 
0.0969 
0.0908 
0.0847 
0.0785 
0.0772 
0.0746 
0.0721 

4.655 
5.102 
5.882 
6.637 
7.039 
7.430 
7.858 
7.942 
8.118 
8.268 

5 MPa 

85.62 
90.00 
100.00 
I10.00 
115.00 
120.00 
125.00 
130.00 
135.00 
136.00 
138.00 
140.00 
142.00 

292.0 
253.0 
194.0 
152.0 
136.0 
121.0 
107.0 
95.0 
83.0 
81.1 
76.5 
72.0 
67.3 

0.1350 
0.1270 
0.1120 
0.0992 
0.0935 
0.0877 
0.0820 
0.0762 
0.0702 
0.0690 
0.0665 
0.0639 
0.0614 

4.673 
5.020 
5.773 
6.533 
6.875 
7.248 
7.664 
8.021 
8.458 
8.508 
8.693 
8.875 
9.123 

Here, our main concern is with the generalization (1.6) proposed by 
Zwanzig. Unfortunately there is still very little known about the bulk 
viscosity 1“ of liquid metals, related to the longitudinal viscosity in 
Eq. (1.6) by 

41 
11 = - + 1”. 3 (4.1 1 

Zwanzig refers to qv = q/3  as “typical,” to get C = 0.171 in Eq. (1.6). Of 
course, it may well be that l / q l  varies with thermodynamic state in 
practice. The data shown in Table 4.1 is itself comparable with experi- 
ment, e.g., Dmelting for Rb is approximately 2.7 x lo-’, at least as 
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TRANSPORT IN LIQUID METALS 

Self-diffusion coefficient D for Table 4.1 
liquid Rb and Cs. 

Rubidium (Rb) 

265 

T/K p/kg m - 3  D cm2 s- ’ )  

500 0.1411 0.1962 
600 0.1370 0.2873 
700 0.1328 0.3898 
800 0.1286 0.5020 

Caesium (Cs) 

T/K p / k g  m-3 D(10-4cm’s-1) 

500 0.1738 0.1722 
600 0.1685 0.2544 
700 0.1630 0.3466 
800 0.1571 0.4467 

regards magnitude. It seems that Zwanzig’s model is reasonably good 
at predicting, at least, the magnitude of D (see Figure 4.1 also). From 
this data it is difficult to predict what the best value of q/qr might be. 

Evidently, diffusion in a metal is involving electron screening of ions, 
relating to the strength of electron-ion interaction, which is intimately 
involved already in the microscopic theory of electrical conductivity. 
The outstanding question here is whether the generalization of the 
Stokes-Einstein relation does, in fact, involve, in a significant quantita- 
tive way, the bulk viscosity q u .  This is involved in interpreting sound- 
wave attenuation: an area clearly worthy of further study in the present 
context. 

5 DISCUSSION AND SUMMARY 

It seems natural at  this point to return to Eqs (1.1)-(1.6) set out in the 
Introduction. The question of the fundamental validity of the Wiede- 
mann-Franz law (1.1) has recently been reopened by Castellani et u1.,16 
following earlier work by Langer.17 The work of Castellani et al. 
considers the theory of thermal conductivity of disordered interacting 
systems, the crucial input being the validity of Fermi-liquid theory. 
Given that, Castellani et ul. demonstrate the continuing validity of the 
law (1.1) in such systems over a range of thermodynamic states wide 
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D x ~ O - ~  lcm2 S-’ 

5.0 - 
1-C=O.181 
2-C ~0.165 
3-C 4l-145 T 

I 

I 
10 T/K 

I 

I 

Figure 4.1 Shows self-diffusion coefficient D versus T for liquid Rb. Various curves were 
calculated from Zwanzig formula (1.6). However, different curves correspond to different 
choices of “constant” C which is dependent on bulk viscosity. In constructing these 
curves, other input was a theoretical estimate of shear viscosity q from work of Paskin 
and Ascarelli.’ 

enough to embrace the metal-insulator transition. However, this as- 
sumption of a Fermi liquid, as Chapman and March“ have recently 
pointed out with specific reference to expanded fluid Cs, is too 
restrictive for such a liquid metal. Their work demonstrates, on the 
coexistence curve and towards the metal-insulator transition, a cross- 
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over in the magnetic susceptibility from Fermi liquid-like behaviour to 
a Curie law regime. This does not necessarily deny the importance of 
the arguments of Castellani et al. for the validity of Eq. (1.1) over quite a 
wide range of thermodynamic states of liquid metals. Nevertheless, we 
consider, with Langer,' ' that there is a real possibility, though perhaps 
under the rather extreme conditions met on approaching the metal- 
insulator transition, that mean free path effects will eventually influence 
(r and 1. in rather different ways. Finally, with reference to the metal- 
insulator transition, and because of the technological importance of 
liquid Na as a reactor coolant, it would be of great interest to have data 
such as given in Ref. 19 extended over the widest possible range of 
thermodynamic states for other alkalis than Rb and Cs. 
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